
DATA SCIENCE

B.Tech – CSE (Emerging Technologie s) R-20

Department of CSE
(Emerging Technologies)

DATA SCIENCE

B.TECH III YEAR – I SEM (R20 Regulation)

2023-2024

STATISTICAL FOUNDATIONS LAB MANUAL

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India

(AUTONOMOUS INSTITUTION – UGC, GOVT. OF INDIA) MRCET CAMPUS

B.Tech – CSE (Emerging Technologies) R-20

DATA SCIENCE

Department of CSE-Emerging Technologies

Vision

 “To be at the forefront of Emerging Technologies and to evolve as a Centre of Excellence in

Research, Learning and Consultancy to foster the students into globally competent professionals

useful to the Society.”

Mission

The department of CSE (Emerging Technologies) is committed to:

 To offer highest Professional and Academic Standards in terms of Personal growth and satisfaction.

 Make the society as the hub of emerging technologies and thereby capture opportunities in new
age technologies.

 To create a benchmark in the areas of Research, Education and Public Outreach.

 To provide students a platform where independent learning and scientific study are encouraged
with emphasis on latest engineering techniques.

QUALITY POLICY

 To pursue continual improvement of teaching learning process of Undergraduate and Post

Graduate programs in Engineering & Management vigorously.

 To provide state of art infrastructure and expertise to impart the quality education and research

environment to students for a complete learning experiences.

 Developing students with a disciplined and integrated personality.

 To offer quality relevant and cost effective programmes to produce engineers as per requirements

of the industry need.

For more information: www.mrcet.ac.in

http://www.mrcet.ac.in/

B.Tech – CSE (Emerging Technologies) R-20

DATA SCIENCE

INDEX

S.No

List of Programs

PageNos.

1

WEEK 1: Study R Languages, Commands, etc
Consider 50 observations (dataset), generating random data using functions

provided, like rbinom, performing basic statistical computations using built-

in functions of R. Discussion of R graphics. Histograms. Stem and leaf

plots,Boxplots,Scatterplots. Bar graphs plotting the data using line graph,

histograms, multiple graphs, etc. Generate 3D graphs or plots

 3-6

2

WEEK 2: Measures of Central Tendency: Given a sample of 50
Observations (from any dataset), use possible functions R or Python and
calculate mean, sd, var, min, max, median, range, and quantile. Discuss
the properties of this distribution.
generate bell curve of a random normal distribution.

 7-8

3
WEEK 3: Pragmatic matters tabulating data,transforming a variable.
Subsetting vectors and dataframes

 9 -13

4

WEEK 4: (i) Consider 100 observations, find out Correlation “cor()”
and Covariance “cov()” and programs on Frequencies and Crosstabs.
(ii) Finding and analyze the missing data.

 14-20

5

WEEK 5: Sorting, transposing and merging data. Reshaping a data
frame. Basics of text processing.Reading unusual data files. Basics

of variable coercion.

 21-23

6

WEEK 6: Hypothesis testing and t-test for any given dataset. Find out
null hypothesis, alternate hypothesis, draw the picture (graph) to
visualize problem. Test the value of population mean.

 24-25

7
WEEK 7: State alpha level and rejection region, estimate the maximum
likely hood and inference.

 26-28

8

WEEK 8: Binomial simulation: Making the computer flip coins for you.
Make use of rbinom function of R to generate samples, and
other functions: counts, avgs, mean, sd, sqrt, hist (histogram).

 29-32

9
WEEK 9: Bayesian Hypothesis testing on any given dataset or
dataframe.

 33-36

10
WEEK 10: Use seaborn and combines simple statistical fits with
plotting on pandas dataframes

 37

11
WEEK 11: Working on Linear Algebra and Linear Systems 38

12

WEEK 12: Working on Monte Carlo Integration (Quasi-random
numbers and find out thevariance on any dataframe)

 39

CSE(DATA SCIENCE) B.Tech-R20

1 Malla Reddy College of Engineering and Technology

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

(R20A6703) Statistical Foundations of Data Science Lab

B.Tech. III Year I Sem L T P C

0 0 3 1.5

COURSE OBJECTIVES:

 The students are exposed to various experimental skills in data analytics which is very

essential forData Science.

 Students are exposed to the Probability distribution using R & Python Programming.

 Students are able to use R and Python Programming and perform all types of operators

andfunctions to generate the effective reports.

 To inculcate in students professional and ethical attitude, multidisciplinary approach and an

ability to relate statistical analysis in data science by using various statistical methods or

principles.

 Students should aware of Hypothetical Tests, Regression Analysis and Monte Carlo

Integration.

 To provide student with an academic environment aware of excellence, written ethical

codesand guidelines and lifelong learning needed for a successful bright and professional

career.

Required Software Tools: R and Python (numpy, scipy, matplotlib)Also required:

Pandas, Statsmodels and Seaborn.

COURSE OUTCOMES:

 The student learns the concept of R and Python Programming and Statistical analysis and try

formulate new solutions or programs.

 Demonstrate an ability to design and develop R and Python programs with this, analysis the

data and generate the related report or results.

 Demonstrate an ability to design programming on probability distribution and computed all

possible outcomes or required reports.

 Able to do hypothetical analysis and transformation of data into useful manner using Python

Programming

 Able to generate the linear algebra, Monte Carlo Integrations etc by using Python

programming.

CSE(DATA SCIENCE) B.Tech-R20

2 Malla Reddy College of Engineering and Technology

WEEK 1: Study R Languages, Commands, etc

Consider 50 observations (dataset), generating random data using functions provided, like

rbinom, performing basic statistical computations using built-in functions of R. Discussion

of R graphics. Histograms. Stem and leaf plots. Boxplots. Scatterplots. Bar graphs plotting

the data using line graph, histograms, multiple graphs, etc. Generate 3D graphs or plots.

WEEK 2: Measures of Central Tendency: Given a sample of 50 Observations (from any

dataset), use possible functions R or Python and calculate mean, sd, var, min, max, median,

range, and quantile. Discuss the properties of this distribution. generate bell curve of a

random normal distribution.

WEEK 3: Pragmatic matters. Tabulating data. Transforming a variable. Subsetting

vectors anddata frames.

WEEK 4: (i) Consider 100 observations, find out Correlation “cor()” and Covariance

“cov()” and programs on Frequencies and Crosstabs.

(ii) Finding and analyze the missing data.

WEEK 5: Sorting, transposing and merging data. Reshaping a data frame. Basics of text

processing.Reading unusual data files. Basics of variable coercion.

WEEK 6: Hypothesis testing and t-test for any given dataset. Find out null hypothesis,

alternate hypothesis, draw the picture (graph) to visualize problem. Test the value of

population mean.

WEEK 7: State alpha level and rejection region, estimate the maximum likely hood and inference.

WEEK 8: Binomial simulation: Making the computer flip coins for you. Make use of

rbinomfunction of R to generate samples, and other functions: counts, avgs, mean, sd, sqrt,

hist (histogram).

WEEK 9: Bayesian Hypothesis testing on any given dataset or dataframe.

WEEK 10: Use seaborn and combines simple statistical fits with plotting on pandas dataframes.

WEEK 11: Working on Linear Algebra and Linear Systems

WEEK 12: Working on Monte Carlo Integration (Quasi-random numbers and find out

thevariance on any dataframe)

CSE(DATA SCIENCE) B.Tech-R20

3 Malla Reddy College of Engineering and Technology

WEEK 1:Study R Languages, Commands, etc

Consider 50 observations (dataset), generating random data using functions provided, like

rbinom, performing basic statistical computations using built-in functions of R.

mydata<- sample(1:nrow(Student_Mark), 10)

> mydata

[1] 17 93 90 33 37 69 62 31 98 15

> Student_Mark[mydata,]

A tibble: 10 x 3

number_courses time_study Marks

<dbl> <dbl> <dbl>

1 5 5.72 30.5

2 4 5.03 23.9

3 7 6.38 40.0

4 8 0.932 15.0

5 4 2.97 13.1

6 4 1.40 8.92

7 4 2.44 10.8

8 8 3.86 24.2

9 4 7.16 41.4

10 3 2.91 11.4

Discussion of R graphics. Histograms. Stem and leaf plots. Boxplots. Scatterplots. Bar

graphs plotting the data using line graph, histograms, multiple graphs, etc. Generate 3D

graphs or plots.

Histogram

CSE(DATA SCIENCE) B.Tech-R20

4 Malla Reddy College of Engineering and Technology

v <- c(9,13,21,8,36,22,12,41,31,33,19)

save.image("C:/Users/MRECT/Music/1.png.RData")

save.image("C:/Users/MRECT/Music/1.png")

hist(v,xlab = "Weight",col = "yellow",border = "blue")

dev.off()

Stem and Leaf Plots

ChickWeight

weight Time Chick Diet

1 42 0 1 1

2 51 2 1 1

3 59 4 1 1

4 64 6 1 1

5 76 8 1 1

6 93 10 1 1

7 106 12 1 1

8 125 14 1 1

9 149 16 1 1

10 171 18 1 1

11 199 20 1 1

12 205 21 1 1

13 40 0 2 1

14 49 2 2 1

15 58 4 2 1

16 72 6 2 1

17 84 8 2 1

CSE(DATA SCIENCE) B.Tech-R20

5 Malla Reddy College of Engineering and Technology

18 103 10 2 1

19 122 12 2 1

20 138 14 2 1

21 162 16 2 1

22 187 18 2 1

23 209 20 2 1

24 215 21 2 1

25 43 0 3 1

26 39 2 3 1

27 55 4 3 1

28 67 6 3 1

29 84 8 3 1

30 99 10 3 1

31 115 12 3 1

32 138 14 3 1

33 163 16 3 1

34 187 18 3 1

35 198 20 3 1

36 202 21 3 1

37 42 0 4 1

38 49 2 4 1

39 56 4 4 1

[reached 'max' / getOption("max.print") -- omitted 328 rows]

stem(ChickWeight$weight)

The decimal point is 1 digit(s) to the right of the |

2 | 599999999

4 | 00000111111111111111111112222222222222223333456678888888899999999999+38

6 | 00111111122222222333334444455555666677777888888900111111222222333334+8

8 | 00112223344444455555566777788999990001223333566666788888889

10 | 0000111122233333334566667778889901122223445555667789

12 | 00002223333344445555667788890113444555566788889

14 | 11123444455556666677788890011234444555666777777789

16 | 00002233334444466788990000134445555789

18 | 12244444555677782225677778889999

20 | 0123444555557900245578

22 | 0012357701123344556788

24 | 08001699

26 | 12344569259

28 | 01780145

30 | 355798

32 | 12712

34 | 1

36 | 13

Scatter plot

CSE(DATA SCIENCE) B.Tech-R20

6 Malla Reddy College of Engineering and Technology

input <- mtcars[,c('wt','mpg')]

print(head(input))

input <- mtcars[,c('wt','mpg')]

png(file = "scatterplot.png")

plot(x = input$wt,y = input$mpg,xlab = "Weight", ylab = "Milage", xlim =

c(2.5,5),ylim = c(15,30),main = "Weight vs Milage")

dev.off()

Bar graphs using line graphs

3D Graphs or Plots

CSE(DATA SCIENCE) B.Tech-R20

7 Malla Reddy College of Engineering and Technology

WEEK 2: Measures of Central Tendency: Given a sample of 50 Observations (from any

dataset), use possible functions R or Python and calculate mean, sd, var, min, max, median,

range, and quantile. Discuss the properties of this distribution. generate bell curve of a

random normal distribution.

CSE(DATA SCIENCE) B.Tech-R20

8 Malla Reddy College of Engineering and Technology

Student_Mark <- read_excel("C:/Users/MRECW/Music/Datasets/archive (3)/Student_Mark.xls")

> View(Student_Mark)

> mydata<-read_excel("C:/Users/MRECW/Music/Datasets/archive (3)/Student_Mark.xls")

> mean(mydata$Marks)

[1] 24.41769

> sd(mydata$Marks)

[1] 14.3262

> var(mydata$Marks)

[1] 205.24

> min(mydata$Marks)

[1] 5.609

> max(mydata$Marks)

[1] 55.299

> median(mydata$Marks)

[1] 20.0595

> diff(range(mydata$Marks))

[1] 49.69

> quantile(mydata$Marks)

0% 25% 50% 75% 100%

5.60900 12.63300 20.05950 36.67625 55.29900

CSE(DATA SCIENCE) B.Tech-R20

9 Malla Reddy College of Engineering and Technology

WEEK 3 :

Tabulating the Data using Python

Visualizing the data in tabular form is easier than visualizing it in a paragraph or comma-

separated form. Nicely formatted tables not only provide you with a better way of looking at

tables it can also help in understanding each data point clearly with its heading and value.

Tabulate is an open-source python package/module which is used to print tabular data in nicely

formatted tables. It is easy to use and contains a variety of formatting functions. It has the fol-

lowing functionalities:

 One function call for all types of formatting

 Can be downloaded in multiple output formats

 Provides a better presentation with text and data.

In this week programs, we will see what are the different types of table formatting we can

perform using Tabulate.

Implementation:

We will start by installing tabulate using pip install tabulate.

1. Importing required libraries

We will be using the tabulate function from the tabulate library so we need to import that.

Other than this we do not require to import any python module.

from tabulate import tabulate

2. Creating Formatted Tables

Now we will start by creating different types of formatted tables.
data = [["Himanshu",1123, 10025], ["Rohit",1126,10029], ["Sha",111178,7355.4]]

print(tabulate(data))

Here we can see a plain table which is nicely formatted. Now let’s see how we can add a

header to this table that we just created.

print(tabulate(data, headers=["Name","User ID", "Roll. No."]))

In order to define the header along with the data, we can set that header=’firstrow’, let us see it

through an example.

data = [['Name','ID'],["Himanshu",1123], ["Rohit",1126], ["Sha",111178]]

print(tabulate(data, headers='firstrow'))

We can also display the indices of the rows by using the show index parameter.

data = [['Name','ID'],["Himanshu",1123], ["Rohit",1126], ["Sha",111178]]

print(tabulate(data, headers='firstrow', showindex='always'))

tabular data types supported by tabulate

The tabulate function can transform any of the following into an easy to read plain-text table:

 list of lists or another iterable of iterables

 list or another iterable of dicts (keys as columns)

https://analyticsindiamag.com/complete-guide-to-different-persisting-methods-in-pandas/
https://analyticsindiamag.com/hands-on-tutorial-on-quickda-for-data-analysis-and-cleaning/
https://analyticsindiamag.com/10-best-python-libraries-for-computer-vision/
https://analyticsindiamag.com/top-7-python-libraries-used-for-hacking/

CSE(DATA SCIENCE) B.Tech-R20

10 Malla Reddy College of Engineering and Technology

 dict of iterables (keys as columns)

 two-dimensional NumPy array

 NumPy record arrays (names as columns)

 pandas.DataFrame

I) list of lists

For example, if we have the following list of lists:

 table = [['First Name', 'Last Name', 'Age'], ['John', 'Smith', 39], ['Mary', 'Jane', 25], ['Jennifer', 'Doe', 28]]

We can turn it into into a much more readable plain-text table using the tabulate function:

 print(tabulate(table))

Since the first list in the list of lists contains the names of columns as its elements, we can set it as

the column or header names by passing ‘firstrow’ as the argument for the headers parameter:

 print(tabulate(table, headers='firstrow'))

The tabulate function also contains a tablefmt parameter, which allows us to improve the appear-

ance of our table using pseudo-graphics:

 print(tabulate(table, headers='firstrow', tablefmt='grid'))

CSE(DATA SCIENCE) B.Tech-R20

11 Malla Reddy College of Engineering and Technology

Use the ‘fancy_grid’ argument for tablefmt:

 print(tabulate(table, headers='firstrow', tablefmt='fancy_grid'))

II) dictionary of iterables

We can create the same table above using a dictionary:

 info = {'First Name': ['John', 'Mary', 'Jennifer'], 'Last Name': ['Smith', 'Jane', 'Doe'], 'Age': [39, 25, 28]}

In the case of a dictionary, the keys will be the column headers, and the values will be

the elements of those columns. We specify that the keys will be the headers by passing ‘keys’ as

the argument for the headers parameter:

 print(tabulate(info, headers='keys'))

CSE(DATA SCIENCE) B.Tech-R20

12 Malla Reddy College of Engineering and Technology

And of course we can use the tablefmt parameter to improve the table’s appearance:

 print(tabulate(info, headers='keys', tablefmt='fancy_grid'))

III) adding an index

We can also add an index to our table with the showindex parameter:

We can add a custom index by passing in an iterable to the showindex parameter. For example, if

we want the index to start at 1, we can pass in a range object as the argument:

CSE(DATA SCIENCE) B.Tech-R20

13 Malla Reddy College of Engineering and Technology

IV) missing values

If we remove ‘Jennifer’ from the above info dictionary, our table will contain an empty field:

If there any missing values in our table, we can choose what to fill them in with using

the missingval parameter. The default value for missingval is an empty string. If we change it

to ‘N/A’, this is what what our table will look like:

For more detailed info about tabulate, visit: https://pypi.org/project/tabulate/

print(tabulate({'First Name': ['John', 'Mary'], 'Last Name': ['Smith', 'Jane', 'Doe'], 'Age': [39, 25, 28]},

headers="keys", tablefmt='fancy_grid', missingval='N/A'))

print(tabulate({'First Name': ['John', 'Mary'], 'Last Name': ['Smith', 'Jane', 'Doe'], 'Age': [39, 25, 28]},

headers="keys", tablefmt='fancy_grid'))

https://pypi.org/project/tabulate/

CSE(DATA SCIENCE) B.Tech-R20

14 Malla Reddy College of Engineering and Technology

WEEK 4: (i) Consider 100 observations, find out Correlation “cor()” and Covariance

“cov()” and programs on Frequencies and Crosstabs.

Let Σ(X) and Σ(Y) be the expected values of the variables, the covariance formula can be repre-

sented as:

Where,

 xi = data value of x

 yi = data value of y

 x̄ = mean of x

 ȳ = mean of y

N = number of data values

What Is Correlation?

In statistics, correlation is a measure that determines the degree to which two or more random var-

iables move in sequence. When an equivalent movement of another variable reciprocates the

movement of one variable in some way or another during the study of two variables, the variables

are said to be correlated. The formula for correlation is:

where,

var(X) = standard deviation of X

var(Y) = standard deviation of Y

Positive correlation occurs when two variables move in the same direction. When variables move in the

opposite direction, they are said to be negatively correlated

CSE(DATA SCIENCE) B.Tech-R20

15 Malla Reddy College of Engineering and Technology

Let’s we will be working on the well-known Iris dataset.

(Download IRIS Dataset from https://www.kaggle.com/datasets/uciml/iris)

Consider: setosa species field or attribute

>>>import pandas as pd

>>>df=pd.read_csv('E:/Kamal Files & Notes/Statastical Foundation Lab/Iris.csv')

Output Screen:

To Find Covariance:

def covariance(x, y):

Finding the mean of the series x and y

mean_x = sum(x)/float(len(x))

mean_y = sum(y)/float(len(y))

Subtracting mean from the individual elements

sub_x = [i - mean_x for i in x]

sub_y = [i - mean_y for i in y]

numerator = sum([sub_x[i]*sub_y[i] for i in range(len(sub_x))])

denominator = len(x)-1

cov = numerator/denominator

return cov

with open('<--file path--->', 'r') as f:

cov_func = covariance(sep_length, sep_width)

https://www.kaggle.com/uciml/iris
https://www.kaggle.com/datasets/uciml/iris

CSE(DATA SCIENCE) B.Tech-R20

16 Malla Reddy College of Engineering and Technology

print("Covariance from the custom function:", cov_func)

To Find Correlation:

def correlation(x, y):

Finding the mean of the series x and y

mean_x = sum(x)/float(len(x))

mean_y = sum(y)/float(len(y))

Subtracting mean from the individual elements

sub_x = [i-mean_x for i in x]

sub_y = [i-mean_y for i in y]

covariance for x and y

numerator = sum([sub_x[i]*sub_y[i] for i in range(len(sub_x))])

Standard Deviation of x and y

std_deviation_x = sum([sub_x[i]**2.0 for i in range(len(sub_x))])

std_deviation_y = sum([sub_y[i]**2.0 for i in range(len(sub_y))])

squaring by 0.5 to find the square root

denominator = (std_deviation_x*std_deviation_y)**0.5 # short but equivalent to

(std_deviation_x**0.5) * (std_deviation_y**0.5)

cor = numerator/denominator

return cor

with open(<<Dataset Path>>, 'r') as f:
cor_func = correlation(sep_length, sep_width)

print("Correlation from the custom function:", cor_func)

CSE(DATA SCIENCE) B.Tech-R20

17 Malla Reddy College of Engineering and Technology

II Analyse the Missing Data (Using Python)

Working with Missing Data in Pandas

Pandas treat None and NaN as essentially interchangeable for indicating missing or null

values. To facilitate this convention, there are several useful functions for detecting,

removing, and replacing null values in Pandas DataFrame :

 isnull()

 notnull()

Is null() and notnull()

importing pandas package

import pandas as pd

making data frame from csv file

data = pd.read_csv(<<<dataset_path>>>)

creating boolean series True for NaN values

boolean_series = pd.isnull(data["Col_Name"])

#Col_Name is the one where the blank values are there

filtering data

displaying data only with Gender = NaN

data[boolean_series]

CSE(DATA SCIENCE) B.Tech-R20

18 Malla Reddy College of Engineering and Technology

NOT NULL()
importing pandas package

import pandas as pd

making data frame from csv file

data = pd.read_csv(<<<dataset_path>>>)

creating boolean series True for NaN values

boolean_series = pd.notnull(data["Col_Name"])

#Col_Name is the one where the blank values are there

filtering data

displaying data only with Gender = NaN

data[boolean_series]

CSE(DATA SCIENCE) B.Tech-R20

19 Malla Reddy College of Engineering and Technology

To Count the Blank Cells or Missing values in a data_frame

To count how many blank cell are there in CSV file

data[‘Col_Name'].isna().sum()

CSE(DATA SCIENCE) B.Tech-R20

20 Malla Reddy College of Engineering and Technology

CSE(DATA SCIENCE) B.Tech-R20

21 Malla Reddy College of Engineering and Technology

WEEK 5: Sorting, transposing and merging data. Reshaping a data frame. Basics

of text processing. Reading unusual data files. Basics of variable coercion.

The various forms of reshaping data in a data frame are:

Transpose of a Matrix,Joining Rows and Columns,Merging of Data Frames

R program to find the transpose of a matrix

first <- matrix(c(1:12), nrow=4, byrow=TRUE)

print("Original Matrix")

first

first <- t(first)

print("Transpose of the Matrix")

first

Output:
[1] "Original Matrix"

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

[4,] 10 11 12

[1] "Transpose of the Matrix"

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

Joining Rows and Columns in Data Frame
In R, we can join two vectors or merge two data frames using functions. There are basi-

cally two functions that perform these tasks:

cbind():
We can combine vectors, matrix or data frames by columns using cbind() function.

Syntax: cbind(x1, x2, x3)

where x1, x2 and x3 can be vectors or matrices or data frames.

rbind():
We can combine vectors, matrix or data frames by rows using rbind() function.

Syntax: rbind(x1, x2, x3)

where x1, x2 and x3 can be vectors or matrices or data frames.

CSE(DATA SCIENCE) B.Tech-R20

22 Malla Reddy College of Engineering and Technology

Cbind and Rbind function in R

name <- c("Shaoni", "esha", "soumitra", "soumi")

age <- c(24, 53, 62, 29)

address <- c("puducherry", "kolkata", "delhi", "bangalore")

Cbind function

info <- cbind(name, age, address)

print("Combining vectors into data frame using cbind ")

print(info)

creating new data frame

newd <- data.frame(name=c("sounak", "bhabani"),

age=c("28", "87"),

address=c("bangalore", "kolkata"))

Rbind function

new.info <- rbind(info, newd)

print("Combining data frames using rbind ")

print(new.info)

Output:
[1] "Combining vectors into data frame using cbind "

name age address

[1,] "Shaoni" "24" "puducherry"

[2,] "esha" "53" "kolkata"

[3,] "soumitra" "62" "delhi"

[4,] "soumi" "29" "bangalore"

[1] "Combining data frames using rbind "

name age address

1 Shaoni 24 puducherry

2 esha 53 kolkata

3 soumitra 62 delhi

4 soumi 29 bangalore

5 sounak 28 bangalore

6 bhabani 87 kolkata

Merging two Data Frames
In R, we can merge two data frames using the merge() function provided both the data

frames should have the same column names. We may merge the two data frames based

on a key value.

CSE(DATA SCIENCE) B.Tech-R20

23 Malla Reddy College of Engineering and Technology

Merging two data frames in R

d1 <- data.frame(name=c("shaoni", "soumi", "arjun"),

ID=c("111", "112", "113"))

d2 <- data.frame(name=c("sounak", "esha"),

ID=c("114", "115"))

total <- merge(d1, d2, all=TRUE)

print(total)

Output:
name ID

1 arjun 113

2 shaoni 111

3 soumi 112

4 esha 115

5 sounak 114

CSE(DATA SCIENCE) B.Tech-R20

24 Malla Reddy College of Engineering and Technology

WEEK 6: Hypothesis testing and t-test for any given dataset. Find out null

hypothesis,alternate hypothesis, draw the picture (graph) to visualize problem.

Test the value of population mean.

CSE(DATA SCIENCE) B.Tech-R20

25 Malla Reddy College of Engineering and Technology

 Step 1: Collect Data

import pandas as pd

data = pd.read_csv('diameter.csv')

 Step 2: Define Null and Alternative Hypotheses

H0 = 'Data is normal'

Ha = 'Data is not normal'

Step 2: Set the level of significance (α) = 5%

alpha = 0.05

 Step 3: Run a test to check the normality

I am using the Shapiro test to check the normality.

from scipy.stats import

shapiro p =

round(shapiro(data)[1], 2)

 Step 4: Conclude using the p-value from step 3

if p > alpha:

print(f"{p} > {alpha}. We fail to reject Null Hypothesis.

{H0}") else:

print(f"{p} <= {alpha}. We reject Null Hypothesis. {Ha}")

The above code outputs “0.52 > 0.05. We fail to reject Null Hypothesis. Data is

Normal.“

https://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk_test

CSE(DATA SCIENCE) B.Tech-R20

26 Malla Reddy College of Engineering and Technology

WEEK 7: State alpha level and rejection re- gion, estimate the maximum likely hood and

inference.

import numpy as np import pandas as pd

from matplotlib import pyplot as plt import seaborn as sns

from statsmodels import api from scipy import stats

from scipy.optimize import minimize

Generate some synthetic data based on the assumption of Normal Distribution.

generate an independent variable x = np.linspace(-10, 30, 100)

generate a normally distributed residual e = np.random.normal(10, 5, 100)

generate ground truth y = 10 + 4*x + e

df = pd.DataFrame({'x':x, 'y':y}) df.head()

%matplotlib inline

import matplotlib.pyplot as plt

plt.rcParams["figure.figsize"] = (11, 5) #set default figure size

import numpy as np

from numpy import exp

from scipy.special import factorial

import pandas as pd

from mpl_toolkits.mplot3d import Axes3D

import statsmodels.api as sm

from statsmodels.api import Poisson

from scipy import stats

from scipy.stats import norm

from statsmodels.iolib.summary2 import summary_col

CSE(DATA SCIENCE) B.Tech-R20

27 Malla Reddy College of Engineering and Technology

poisson_pmf = lambda y, μ: μ**y / factorial(y)

* exp(-μ) y_values = range(0, 25)

fig, ax = plt.subplots(figsize=(12, 8))

for μ in [1, 5, 10]:

distribution =

[] for y_i in

y_values:

distribution.append(poisson_pmf(y

_i, μ)) ax.plot(y_values,

distribution,

label=f'μ={μ}'

, alpha=0.5,

marker='o',

markersize=8)

ax.grid()

ax.set_xlabel('y', fontsize=14)

ax.set_ylabel('$f(y \mid \mu)$',

fontsize=14) ax.axis(xmin=0, ymin=0)

ax.legend(fontsize=14)

plt.show()

CSE(DATA SCIENCE) B.Tech-R20

28 Malla Reddy College of Engineering and Technology

CSE(DATA SCIENCE) B.Tech-R20

29 Malla Reddy College of Engineering and Technology

WEEK 8: Binomial simulation: Making the computer flip coins for you. Make use of rbinom

function of R to generate samples, and other functions: counts, avgs, mean, sd, sqrt, hist

(histogram).

We can model individual Bernoulli trials as well. We do this be setting the trials attribute to

one. Here is the outcome of 10 coin flips:

Or stepping it up a bit, here’s the outcome of 10 flips of 100 coins:

l <- c(2, 3, 7, 8, 10, 13, 14, 15,

18, 18, 20, 26, 25, 26, 27, 28)

hist(l)

Adding Mean and Median
mean <- mean(l) # Mean: 16.25

med <- median(l) # Meadian: 16.5

binomial simulation in r

rbinom(10, 100,.5)

[1] 52 55 51 50 46 42 50 49 46 56

r binomial - binomial simulation in r

rbinom(7, 150,.05)

[1] 10 12 10 2 5 5 14

bernoulli distribution in r

rbinom(10, 1,.5)

[1] 1 0 1 1 1 0 0 0 0 1

CSE(DATA SCIENCE) B.Tech-R20

30 Malla Reddy College of Engineering and Technology

Example 1: Add Mean to Histogram in R
l <- c(2, 3, 7, 8, 10, 13, 14, 15,

18, 18, 20, 26, 25, 26, 27, 28)

Mean of l

mean <- mean(l)

Plotting histogram and Adding

Mean line to Histogram

hist(l)

abline(v = mean, col = 'blue')

Example 2: Add Median to Histogram in R
l <- c(2, 3, 7, 8, 10, 13, 14, 15,

18, 18, 20, 26, 25, 26, 27, 28)

Median of l

med <- median(l)

Plotting histogram and Adding

Median line to Histogram

hist(l)

abline(v = med, col = 'red')

CSE(DATA SCIENCE) B.Tech-R20

31 Malla Reddy College of Engineering and Technology

Computing Average in R Programming

R program to get average of a list

Taking a list of elements

list = c(2, 4, 4, 4, 5, 5, 7, 9)

Calculating average using mean()

print(mean(list))

Output:
[1] 5

R program to get average of a list

Taking a list of elements

list = c(2, 40, 2, 502, 177, 7, 9)

Calculating average using mean()

print(mean(list))

[1] 105.5714

Computing Variance in R Programming

#R program to get variance of a list

Taking a list of elements

list = c(2, 4, 4, 4, 5, 5, 7, 9)

Calculating variance using var()

print(var(list))

Output:
[1] 4.571429

CSE(DATA SCIENCE) B.Tech-R20

32 Malla Reddy College of Engineering and Technology

R program to get variance of a list

Taking a list of elements

list = c(212, 231, 234, 564, 235)

Calculating variance using var()

print(var(list))

[1] 22666.7

Standard Deviation in R
R program to get

standard deviation of a list

Taking a list of elements

list = c(2, 4, 4, 4, 5, 5, 7, 9)

Calculating standard

deviation using sd()

print(sd(list))

OUTPUT

[1] 2.13809

R program to get

standard deviation of a list

Taking a list of elements

list = c(290, 124, 127, 899)

Calculating standard

deviation using sd()

print(sd(list))

OUTPUT

[1] 367.6076

CSE(DATA SCIENCE) B.Tech-R20

33 Malla Reddy College of Engineering and Technology

WEEK 9: Bayesian Hypothesis testing on any given dataset or dataframe.

#Author DataFlair

#Author DataFlair

t.test(y, mu = 5, alternative = 'greater')

 # Defining sample vector

t.test(x, mu = 5)

CSE(DATA SCIENCE) B.Tech-R20

34 Malla Reddy College of Engineering and Technology

x <- rnorm(100)

One Sample T-Test

t.test(x, mu = 5)

Output:
One Sample t-test

data: x

t = -49.504, df = 99, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 5

95 percent confidence interval:

-0.1910645 0.2090349

sample estimates:

mean of x

0.008985172

Two Sample T-Testing
Defining sample vector

x <- rnorm(100)

y <- rnorm(100)

Two Sample T-Test

t.test(x, y)

Welch Two Sample t-test

data: x and y

t = -1.0601, df = 197.86, p-value = 0.2904

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.4362140 0.1311918

sample estimates:

mean of x mean of y

-0.05075633 0.10175478

CSE(DATA SCIENCE) B.Tech-R20

35 Malla Reddy College of Engineering and Technology

1. Example Data Frame.

2. Distribution and overlap.

ggplot(df, aes(x=aov, fill=group)) +

stat_count(width = 0.5, alpha=.5, position="dodge")

Dummy example with 2 groups A/B composed of 20 observa-

tions each of Average order value per user.

group <-

c("a","a","a","a","a","a","a","a","a","a","a","a","a","a","a",

"a","a","a","a","a",

"b","b","b","b","b","b","b","b","b","b","b","b","b","b", "b",

"b", "b", "b", "b", "b")

aov <-

c(100,100,100,100,100,100,100,100,200,200,200,200,300,300,400,

400,500,500,600,700,

700,700,700,700,700,700,700,700,600,600,600,600,600,500,500,40

0,300,200,200,100)

df <- cbind(group, aov)

df <- as.data.frame(df)

CSE(DATA SCIENCE) B.Tech-R20

36 Malla Reddy College of Engineering and Technology

Group B targeting is likely to secure higher AOV.

CSE(DATA SCIENCE) B.Tech-R20

37 Malla Reddy College of Engineering and Technology

WEEK 10: Use seaborn and combines simple statistical fits with plotting on pandas dataframes.

Solution: Juypter Notebook

CSE(DATA SCIENCE) B.Tech-R20

38 Malla Reddy College of Engineering and Technology

WEEK 11: Working on Linear Algebra and Linear Systems

11 a) Linear Algebra- Juypter Notebook

11b) Working on Linear Systems – Solution Jupyter Notebook

CSE(DATA SCIENCE) B.Tech-R20

39 Malla Reddy College of Engineering and Technology

WEEK 12: Working on Monte Carlo Integration (Quasi-random numbers and find out

the variance on any data frame)

from scipy import stats

import numpy as np

import matplotlib.pyplot as plt

N = 10000

a, b = (50,50)

x_min, x_max = (0, .55)

randx = np.random.uniform(x_min, x_max, N)

y = stats.beta.pdf(randx, a, b)

print(f'Real value to find: {stats.beta(a,b).cdf(.55)}')

print(f'Integral value: {(x_max-x_min)*y.sum()/N}')

print(f'Calculation error: {np.sqrt((x_max-x_min)*(y*y).sum()/N - (x_max-

x_min)*y.mean()**2)/np.sqrt(N)}')

Real value to find: 0.8413478010629016

Integral value: 0.8486374584821799

Calculation error: 0.019813380205560064

Plotting

plt.figure(figsize=(8,5))

x = np.linspace(0, 1, 1000)

plt.plot(x, stats.beta.pdf(x, a, b))

Then, let's only plot a thousand points for more readability

plt.scatter(randx[:1000], y[:1000], alpha=.08, label='value of f for random uniform x')

plt.xlabel('x')

plt.ylabel('density')

plt.legend()

plt.show()

The blue points correspond to the 10 000 values of f(x_i) computed from the uniform draws we

made over X.

	Department of CSE-Emerging Technologies
	Mission
	QUALITY POLICY
	INDEX
	MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
	B.Tech. III Year I Sem L T P C
	COURSE OBJECTIVES:
	COURSE OUTCOMES:
	Histogram
	save.image("C:/Users/MRECT/Music/1.png.RData") save.image("C:/Users/MRECT/Music/1.png") hist(v,xlab = "Weight",col = "yellow",border = "blue") dev.off()
	Scatter plot
	Bar graphs using line graphs 3D Graphs or Plots
	Implementation:
	1. Importing required libraries
	2. Creating Formatted Tables

	I) list of lists

	II) dictionary of iterables
	III) adding an index
	WEEK 4: (i) Consider 100 observations, find out Correlation “cor()” and Covariance “cov()” and programs on Frequencies and Crosstabs.
	To Find Covariance:
	def covariance(x, y):
	mean_y = sum(y)/float(len(y))
	sub_y = [i - mean_y for i in y]
	cov = numerator/denominator return cov
	cov_func = covariance(sep_length, sep_width)

	To Find Correlation:
	def correlation(x, y):
	mean_y = sum(y)/float(len(y))
	sub_y = [i-mean_y for i in y] # covariance for x and y
	std_deviation_x = sum([sub_x[i]**2.0 for i in range(len(sub_x))]) std_deviation_y = sum([sub_y[i]**2.0 for i in range(len(sub_y))]) # squaring by 0.5 to find the square root
	cor = numerator/denominator return cor
	cor_func = correlation(sep_length, sep_width) print("Correlation from the custom function:", cor_func)

	Working with Missing Data in Pandas
	Pandas treat None and NaN as essentially interchangeable for indicating missing or null values. To facilitate this convention, there are several useful functions for detecting, removing, and replacing null values in Pandas DataFrame :
	# importing pandas package import pandas as pd
	data = pd.read_csv(<<<dataset_path>>>)
	# importing pandas package import pandas as pd (1)
	data = pd.read_csv(<<<dataset_path>>>) (1)
	Transpose of a Matrix,Joining Rows and Columns,Merging of Data Frames
	Joining Rows and Columns in Data Frame
	cbind():
	We can combine vectors, matrix or data frames by columns using cbind() function.

	rbind():
	We can combine vectors, matrix or data frames by rows using rbind() function.
	where x1, x2 and x3 can be vectors or matrices or data frames.

	Merging two Data Frames
	In R, we can merge two data frames using the merge() function provided both the data frames should have the same column names. We may merge the two data frames based on a key value.

	Step 2: Define Null and Alternative Hypotheses
	Step 2: Set the level of significance (α) = 5%

	Step 3: Run a test to check the normality
	Step 4: Conclude using the p-value from step 3
	WEEK 8: Binomial simulation: Making the computer flip coins for you. Make use of rbinom function of R to generate samples, and other functions: counts, avgs, mean, sd, sqrt, hist (histogram).
	Output:
	Computing Variance in R Programming

	Output: (1)
	WEEK 9: Bayesian Hypothesis testing on any given dataset or dataframe.
	Two Sample T-Testing

	1. Example Data Frame.
	Group B targeting is likely to secure higher AOV.
	Solution: Juypter Notebook

